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Abstract— In this letter, the application of cellular automata

to the modeling of electromagnetic phenomena is investigated.

Cellular automata are fully discrete computational models (in
space, time, and variables) and are exactly computable using
digital hardware. One type of cellular automata, the HPP lattice
gas automaton, is applied hereto the modeling of two-dimensional
electromagnetic field problems. Lattice gas automata can be
completely described in terms of binary variables and are capable
of providing linear wave behavior. Two examples are presented
to explore the proposed aplproach: one-dimensioual plane wave

propagation and plane wave scattering from a perfectly conduct-

ing rectangular cylinder.

I. INTRODUCTION

I N THIS LETTER, we consider cellular automata as an

alternative computational approach to modeling electro-

magnetic phenomena. The approach is a departure from the

traditional differential equation description from which almost

all computational electromagnetic techniques have evolved

[1]. Cellular automata consist of a large, spatially discrete

lattice of very simple cells that evolve in discrete time steps.

The number of possible states of each cell is typically very

small. The evolution of cellular automata from one state to

the next is described by a deterministic rule, which is local

in both space and time. For our application, the description

of each cell is achieved using binary variables and continuum

behavior over the lattice is obtained through local averaging of

states. In the early 1980’s, through experimentation with vari-

ous one-dimensional cellular automata, Wolfram demonstrated

that these simple systems are capable of complex dynami-

cal behavior [2]. Cellular automata have been considered as

an alternative to the traditional partial differential equation

description of physical phenomena [3]-[5]. Optimal parallel

architectures for the simulation of cellular systems is discussed

in [6], however computational experiments or details regarding

application to electromagnetic phenomena are not provided.

In this letter, we present a cellular automata algorithm for

modeling electromagnetic phenomena and give computational

results for simple two-dimensional propagation and scattering

problems.

II. THEORY

The HPP lattice gas automaton was introduced in 1976
as a conceptual model (or idealized representation) of the
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microscopic behavior of fluid [7]. It can be shown that

the partial differential equations that model fluid dynamics

(Navier-Stokes equation and the continuity equation) cart be

derived from various lattice gas models and that lattice gas

automata yield linear wave behavior for small perturbations

to an equilibrium distribution [5]. In this letter, we utilize the

HPP lattice gas automaton such that its linear wave behavior

can be applied to the modeling of two-dimensional TM or TE

electromagnetic phenomena that can be described by a linear

scalar wave equation

(~+:)”’=+% ‘1)

(assuming independence in the 2 direction) with the applica-

tion of boundary conditions and scurces.

The HPP lattice gas automaton algorithm can be described

in terms of the interaction of particles on a lattice, as shown

in Fig. 1. The lattice spacing is Al in each direction. Each

cell has four links, with each link representing a possible

velocity state in which a partlcIe can exist. Particles obey a

boolean exclusion principle-only one particle is allowed to

reside in a particular velocity state within a particular cell. The

lattice gas algorithm operates in two synchronized steps. In the

first step, the particles interact within cells following specific

collision rules. In the subsequent step the resultant particle

velocity states are transferred to adj scent cells. An example of

the operation of the algorithm over a single time step At is

illustrated in Fig. 1, where a single cell is outlined. The arrows

indicate the velocity states in which the particles exist. Fig.

l(a) and (b) shows the state of the particles before and after

collision, respectively. In Fig. l(c), the particles are transferred

to adjacent cells. With the HPP model only two body collisions

occur, and only if the particles exist in opposing velocity states.

The result is two particles existing in states at right angles to

the initial pair. The outlined cell c,f Fig. 1 illustrates a two-

body collision. For all other possible situations, including a

single particle, two particles at right angles, three particles

or four particles, no transformation of velocity states takes

place. The transition from one state to the next is unique and

can be implemented with a look-up table. With these collision

and transfer rules, conservation of momentum and energy are

satisfied. The lattice gas automaton is exactly computable (is
not affected by finite-precision arithmetic) and is reversible.

A model of electromagnetic phenomena will incorporate

polarization and allow the implementation of both Neumann

and Dirichlet boundary conditions. 1n order to accomplish this,

we use the same approach as Rothmau where dual lattices
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Fig. 1. Operation of the HPP lattice gas automaton over a single time step At. In (a), the particles are traveling toward the center of the cells. In (b) the
state of the lattice is shown after the collisions have taken place, and in (c) the particles have been transferred to adjacent cells.
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Fig.2. Transient response attbeelocations ofa Gaussian-pulsed plane wave
propagating in a cellular automata lattice.

are employed [8]. One lattice carries positive particles, with

theother carrying izegative particles. Particles on the positive

and negative lattices are referred to as e+ and e– particles,

respectively. Each set of particles follow the collision rules

independently, therefore the particles on the positive and

negative lattices do not interact with the exception of along

Dirichlet boundaries.

For the HPP automaton, the state of each cell can be

described by four boolean variables, with 24 possible states for

each cell. The microscopic state of a particular cell located in

space at (x, y) can be expressed in terms of a boolean variable,
~i (z, g), where i indexes the four possible velocity states (i.e.,

z =1 to 4). The value of Ni (z, y) is 1 if a particle at the

cell location (x, y) exists in velocity state i, and O otherwise.

For a two-dimensional TM model (0 ~ ~,), the microscopic

electric field at each cell is defined as

where N;+ and Ni– describe the state of the cell at (z, g)

within the positive and negative lattice, respectively. Macro-

scopic quantities are defined by local averaging of the particle

distribution. For example, the macroscopic electric field Ez,

at a particular spatial location ($, y) is defined as

(Ez(z, y) = ~ ~ (N; (z~> Y~) – WIX~> Y~))

)

(3)

R ‘i=l

where R describes a neighborhood of cells centered around

(~, g), and (ZE, YE) is the location of a particular cell within

R. If a sufficiently large neighborhood (and correspondingly

fine grain mesh) is used, it is possible to obtain a continuum

approximation [3].

Boundary conditions for the dual HPP lattice have been de-

veloped in order to properly truncate the lattice and implement

scattering obstacles. A perfect electric conducting boundary

condition (PEC) is modeled by enforcing a zero microscopic

tangential electric field at the boundary, (i.e., a e+ particle

incident at a PEC boundary is transfen-ed to the e– lattice

at the following time step). A perfect magnetic conducting

boundary condition (PMC) is modeled by enforcing a zero

microscopic tangential magnetic field at the boundary.

III. RESULTS

Results obtained from our lattice gas automata numerical

experiments are provided to demonstrate wave propagation

and scattering. In the first example considered, a Gaussian-

pulsed plane wave is propagated through the lattice. The

simulation space is defined as O < x < 600A1 and O <

y < 2400A1. PMC boundary conditions are applied parallel

to the y axis (at the top and bottom of the lattice), and PEC

boundary conditions are applied parallel to the z axis (at the

left and right of the lattice). A uniform background density of

0.5 (50% of all possible states are randomly filled) is applied

to both the positive and negative lattices. A plane wave is

excited by superimposing a Gaussian distribution (centered

at y = 620Ai) of particles on top of the existing background

distribution, at t = O. For this example 25% of the unoccupied

states above the background level in the positive lattice are
filled on average at y = 20A1. The pulse width of the Gaussian

distribution is 120A1. Observation points are located along the

center of the lattice (x = 300A1) at y = 1020, 1420, and

1820A1. A circular sampling window of radius 30Al is used

to determine the macroscopic field EZ. In the experiment, the

PEC boundary conditions are located a sufficient distance from

the source and observation locations such that the simulation

effectively takes place in an infinite lattice. The simulation

is evolved for 2000 At. In Fig. 2, the transient response at

each observation location is provided. An appropriate delay

is observed between the response at each output location,

indicating a propagation velocity of c = Al/( ~At). In

Fig. 2, the transient signal is corrupted with a large high-
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Fig. 3. Interaction of a Ganssiau-pulsed plane wave with a PEC rectangular

cylinder demonstrating two-dimensional TM scattering with (a) the lattice,
and (b) a comparison of the frequency-difference and time-domain simulation

at four observation locations within the lattice.

frequency noise. The noise is a result of the background

random distribution and depends on the size of the sampling

window. The noise does not significantly affect results after a

discrete Fourier transform is applied.

To further examine the cellular automata approach, we

consider a simple two-dimensional wave scattering problem

as shown in Fig. 3. A Gaussian-pulsed plane wave source is

excited at y = 1000A1 within a lattice defined as O < z <

1000A1 and O < y < 2200A1. A perfect electrical conducting

rectangular cylinder is placed within the mesh, defined by the

planes xmin = 405A1, x~aX = 594A1, and y~in = 1500 AZ,

Y~~~ = 1599AJ. The top and bottom lattice boundaries are
terminated with PMC boundary conditions, and the left and

right lattice boundaries are terminated with PEC boundary

conditions. The simulation is evolved for 1700 At. In Fig.

3, the frequency domain response obtained from the lattice

gas simulation are provided for four observation locations: 1)

X = 500A1, y = 1250A1; 2) X = 500A1, y = 1360 Al; 3)

x = 500A1, y = 1470 Al; and 4) x = 500 Al, y = 1739A1.

Results from a finite-difference time-domain simulation are

also shown for comparison and indicate reasonable agreement.

IV. DISCUSSION

In this letter, the application of cellular automata to the

modeling of electromagnetic phenomena has been considered.

Cellular automata are discrete models of physical phenomena

that are exactly computable using digital hardware. The HPP

lattice gas automaton has been applied, which is described by

binary variables with continuum behavior obtained through

local averaging of the discrete states. Correct qualitative be-

havior and reasonably accurate quantitative results have been

obtained from our version of the HPP lattice gas automaton.

The cellular automata approach is not equivalent to an integer

arithmetic implementation of a transmission line matrix or

finite-difference time-domain algoridhm. The cellular automata

approach to modeling physical systems is based on the use of

simple microscopic interactions from which differential equa-

tion behavior emerges on a macroscopic scale after statistical

averaging. The ability to model comlplex phenomena, such as

that due to dispersive or nonlinear media, maybe possible with

suitable cellular automata rules. Although the computational

complexity of a cellular automata unit cell is considerably less

when compared to a finite-difference time-domain approach, a

much finer mesh must be used. For the example considered in

Fig. 3 of this letter, the HPP cellular automaton lattice spacing

was 10 times finer than that of the equivalent finite-difference

time-domain mesh, so that the total number of cell updates

drastically increases by a factor of 1000 (two spatial and one

temporal dimension). Even with this added burden, however,

since the unit cell in the lattice gas requires only a few bits of

memory and simple binary operations, the technique does lend

itself to very efficient implementatj on with special purpose

computational hardware [4]–[6], [9].
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