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Abstract—1In this letter, the application of cellular automata
to the modeling of electromagnetic phenomena is investigated.
Cellular automata are fully discrete computational models (in
space, time, and variables) and are exactly computable using
digital hardware. One type of cellular automata, the HPP lattice
gas automaton, is applied here to the modeling of two-dimensional
electromagnetic field problems. Lattice gas automata can be
completely described in terms of binary variables and are capable
of providing linear wave behavior. Two examples are presented
to explore the proposed approach: one-dimensional plane wave
propagation and plane wave scattering from a perfectly conduct-
ing rectangular cylinder.

1. INTRODUCTION

N THIS LETTER, we consider cellular automata as an

alternative computational approach to modeling electro-
magnetic phenomena. The approach is a departure from the
traditional differential equation description from which almost
all computational electromagnetic techniques have evolved
[1]. Cellular automata consist of a large, spatially discrete
lattice of very simple cells that evolve in discrete time steps.
The number of possible states of each cell is typically very
small. The evolution of cellular automata from one state to
the next is described by a deterministic rule, which is local
in both space and time. For our application, the description
of each cell is achieved using binary variables and continuum
behavior over the lattice is obtained through local averaging of
states. In the early 1980’s, through experimentation with vari-
ous one-dimensional cellular automata, Wolfram demonstrated
that these simple systems are capable of complex dynami-
cal behavior [2]. Cellular automata have been considered as
an alternative to the traditional partial differential equation
description of physical phenomena [3]-[5]. Optimal parallel
architectures for the simulation of cellular systems is discussed
in [6], however computational experiments or details regarding
application to electromagnetic phenomena are not provided.
In this letter, we present a cellular automata algorithm for
modeling electromagnetic phenomena and give computational
results for simple two-dimensional propagation and scattering
problems.

II. THEORY

The HPP lattice gas automaton was introduced in 1976
as a conceptual model (or idealized representation) of the
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microscopic behavior of fluid [7]. It can be shown that
the partial differential equations that model fluid dynamics
(Navier-Stokes equation and the continuity equation) can be
derived from various lattice gas models and that lattice gas
automata yield linear wave behavior for small perturbations
to an equilibrium distribution [5]. In this letter, we utilize the
HPP lattice gas automaton such that its linear wave behavior
can be applied to the modeling of two-dimensional TM or TE
electromagnetic phenomena that can be described by a linear
scalar wave equation
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(assuming independence in the Z direction) with the applica-
tion of boundary conditions and sources.

The HPP lattice gas automaton algorithm can be described
in terms of the interaction of particles on a lattice, as shown
in Fig. 1. The lattice spacing is Al in each direction. Each
cell has four links, with each link representing a possible
velocity state in which a particle can exist. Particles obey a
boolean exclusion principle—only one particle is allowed to
reside in a particular velocity state within a particular cell. The
lattice gas algorithm operates in two synchronized steps. In the
first step, the particles interact within cells following specific
collision rules. In the subsequent step the resultant particle
velocity states are transferred to adjacent cells. An example of
the operation of the algorithm over a single time step At is
illustrated in Fig. 1, where a single cell is outlined. The arrows
indicate the velocity states in which the particles exist. Fig.
1(a) and (b) shows the state of the particles before and after
collision, respectively. In Fig. 1(c), the particles are transferred
to adjacent cells. With the HPP model only two body collisions
occur, and only if the particles exist in opposing velocity states.
The result is two particles existing in states at right angles to
the initial pair. The outlined cell cf Fig. 1 illustrates a two-
body collision. For all other possible situations, including a
single particle, two particles at right angles, three particles
or four particles, no transformation of velocity states takes
place. The transition from one state to the next is unique and
can be implemented with a look-up table. With these collision
and transfer rules, conservation of momentum and energy are
satisfied. The lattice gas automaton is exactly computable (is
not affected by finite-precision arithmetic) and is reversible.

A model of electromagnetic phenomena will incorporate
polarization and allow the implementation of both Neumann
and Dirichlet boundary conditions. In order to accomplish this,
we use the same approach as Rothman where dual lattices
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Fig. 1. Operation of the HPP lattice gas automaton over a single time step
state of the lattice is shown after the collisions have taken place, and in (c)
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Fig. 2. 'Transient response at three locations of a Gaussian-pulsed plane wave
propagating in a cellular automata lattice.

are employed [8]. One lattice carries positive particles, with
the other carrying negative particles. Particles on the positive
and negative lattices aré referred to as ey and e_ particles,
respectively. Each set of particles follow the collision rules
independently, therefore the particles on the positive and
negative lattices do not interact with the exception of along
~ Dirichlet boundaries.

For the HPP automaton, the state of each cell can be
described by four boolean variables, with 2 possible states for
each cell. The microscopic state of a particular céll located in
space at (x, y) can be expressed in terms of a boolean variable,
N;(z,y), where 7 indexes the four possible velocity states (i.e.,
i =1 to 4). The value of N;(x,y) is 1 if a particle at the
cell location (z,y) exists in velocity state 7, and 0 otherwise.
For a two-dimensional TM model (® = E.), the microscopic
electric field at each cell is defined as
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where N;r and N, describe the state of the cell at (z,y)
within the positive and negative lattice, respectively. Macro-
scopic quantities are defined by local averaging of the particle
distribution. For example, the macroscopic electric field F,,
at a particular spatial location (x,y) is defined as

E.(z,y) = Z ( (N;" (zr,yR) — Ni~($Rny))) 3
R \i=1

At. In (a), the particles are traveling toward the center of the cells. In (b) the
the particles have been transferred to adjacent cells.

where R describes a neighborhood of cells centered around
(z,v), and (xR, yr) is the location of a particular cell within
R. If a sufficiently large neighborhood (and correspondingly
fine grain mesh) is used, it is possible to obtain a continuum
approximation [3]. »
Boundary conditions for the dual HPP lattice have been de-
veloped in order to properly truncate the lattice and implement
scattering obstacles. A perfect electric conducting boundary
condition (PEC) is modeled by enforcing a zero microscopic
tangential electric field ‘at the boundary, (i.e., a e; particle
incident at a PEC boundary is transferred to the e_ lattice
at the following time step). A perfect magnetic conducting
boundary condition (PMC) is modeled by enforcing a zero
microscopic tangential magnetic field at the boundary.

III. RESULTS

Results obtained from our lattice gas automata numerical
experiments are provided to demonstrate wave propagation
and scattering. In the first example considered, a Gaussian-
pulsed plane wave is propagated through the lattice. The
simulation space is defined as 0 < z < 600A[ and 0 <
y < 2400Al. PMC boundary conditions are applied parallel
to the y axis (at the top and bottom of the lattice), and PEC
boundary conditions are applied parallel to the = axis (at the
left and right of the lattice). A uniform background density of
0.5 (50% of all possible states are randomly filled) is applied
to both the positive and negative lattices. A plane wave is
excited by superimposing a Gaussian distribution (centered

-+ at y = 620Al) of particles on top of the existing background

distribution, at ¢ = 0. For this example 25% of the unoccupied
states above the background level in the positive lattice are
filled on average at y = 20A/. The pulse width of the Gaussian
distribution is 120Al. Observation points are located along the
center of the lattice (x = 300Al) at y = 1020, 1420, and
1820Al. A circular sampling window of radius 30A! is used
to determine the macroscopic field E,. In the experiment, the
PEC boundary conditions are located a sufficient distance from
the source and observation locations such that the simulation
effectively takes place in an infinite lattice. The simulation
is evolved for 2000A¢. In Fig. 2, the transient response at
each observation location is provided. An appropriate delay
is observed between the response at each output location,
indicating a propagation velocity of ¢ Al/(v/2At). In
Fig. 2, the transient signal is corrupted with a large high-
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Fig. 3. Interaction of a Gaussian-pulsed plane wave with a PEC rectangular
cylinder demonstrating two-dimensional TM scattering with (a) the lattice,
and (b) a comparison of the frequency-difference and time-domain simulation
at four observation locations within the lattice. '

frequency noise. The noise is a result of the background
random distribution and depends on the size of the sampling
window. The noise does not significantly affect results after a
discrete Fourier transform is applied. -

To further examine the cellular automata approach, we
consider a simple two-dimensional wave scattering problem
as shown in Fig. 3. A Gaussian-pulsed plane wave source is
excited at y = 1000A!/ within a.lattice defined as 0 < z <
1000A7 and 0 < y < 2200Al. A perfect electrical conducting
rectangular cylinder is placed within the mesh, defined by the
planes zpnin = 405Al, Tpax = 594Al, and ymin = 1500Al,
Ymax = 1599Al. The top and bottom lattice boundaries are
" terminated with PMC boundary conditions, and the left and
right lattice boundaries are terminated with PEC boundary
conditions. The simulation is evolved for 1700A¢. In Fig.
3, the frequency domain response obtained from the lattice
* gas simulation are provided for four observation locations: 1)

= 500Al, y = 1250Al; 2) = = 500Al, y = 1360Al; 3)
x = BO0AIL, y = 1470Al; and 4) z = 500Al, y = 1739Al.
Results from a finjte-difference time-domain simulation are
also shown for comparison and indicate reasonable agreement.

IV. DISCUSSION

In this letter, the application of cellular automata to the
modeling of electromagnetic phenomena has been considered.
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Cellular automata are discrete models of physical phenomena
that are exactly computable using digital hardware. The HPP
lattice gas automaton has been applied, which is described by
binary variables with continuum behavior obtained through
local averaging of the discrete states. Correct qualitative be-
havior and reasonably accurate quantitative results have been
obtained from our version of the HPP lattice gas automaton.
The cellular automata approach is not equivalent to an integer
arithmetic implementation of a transmission line matrix or
finite-difference time-domain algorithm. The cellular automata
approach to modeling physical systems is based on the use of
simple microscopic interactions from which differential equa-
tion behavior emerges on a macroscopic scale after statistical
averaging. The ability to model complex phenomena, such as
that due to dispersive or nonlinear media, may be possible with
suitable cellular automata rules. Although the computational
complexity of a cellular automata unit cell is considerably less
when compared to a finite-difference time-domain approach, a
much finer mesh must be used. For the example considered in
Fig. 3 of this letter, the HPP cellular automaton lattice spacing
was 10 times finer than that of the equivalent finite-difference
time-domain mesh, so that the total number of cell updates
drastically increases by a factor of 1000 (two spatial and one
temporal dimension). Even with this added burden, however,
since the unit cell in the lattice gas requires only a few bits of
memory and simple binary operations, the technique does lend
itself to very efficient implementation with special purpose
computational hardware [4]-[6], [9].
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